Resolvin D1 Protects Podocytes in Adriamycin-Induced Nephropathy through Modulation of 14-3-3β Acetylation

نویسندگان

  • Xueming Zhang
  • Xinli Qu
  • Yu Bo Yang Sun
  • Georgina Caruana
  • John F. Bertram
  • David J. Nikolic-Paterson
  • Jinhua Li
چکیده

Resolvin D1 (RvD1) is a lipid-derived mediator generated during the resolution inflammation. While the immunoresolvent effects of Resolvins have been extensively studied in leukocytes, actions of Resolvins on intrinsic kidney cells have received little attention. The podocyte plays a central role in glomerular function, and podocyte damage can lead to proteinuria and glomerulosclerosis. This study examined whether RvD1 has renoprotective effects upon podocytes. We investigated a mouse model of adriamycin (ADR) nephropathy featuring rapid induction of podocyte damage and proteinuria followed by glomerulosclerosis. We identified a progressive loss of synaptopodin expression over a 28 day time-course of ADR nephropathy which was associated with increased acetylation of 14-3-3β and reduced synaptopodin phosphorylation. Groups of mice were given once daily RvD1 treatment (4 ng/g body weight/day) starting either 30 min (early treatment) or 14 days (late treatment) after ADR injection and continued until mice were killed on day 28. Early, but not late, RvD1 treatment attenuated ADR-induced proteinuria, glomerulosclerosis and tubulointerstitial fibrosis, modified macrophages from an M1 to M2 phenotype. Early RvD1 treatment prevented the down-regulation of synaptopodin expression and changes in 14-3-3β acetylation and synaptopodin phosphorylation. In a podocyte cell line, RvD1 was shown to prevent rapid TNF-α-induced down-regulation of synaptopodin expression. In transfection studies, TNF-α-induced a decrease in synaptopodin phosphorylation and an increase in acetylation of 14-3-3β, resulting in disassociation between 14-3-3β and synaptopodin. RvD1 prevented TNF-α induced post-translational modification of synaptopodin and 14-3-3β proteins, and maintained the synaptopodin/14-3-3β interaction. Furthermore, replacement of lysine K51, or K117+K122 in 14-3-3β with glutamine, to mimic lysine acetylation, significantly reduced the interaction between 14-3-3β and synaptopodin. In conclusion, our studies provide the first evidence that RvD1 can protect against podocyte damage by preventing down-regulation of synaptopodin through inhibition of 14-3-3β/synaptopodin dissociation. RvD1 treatment may have potential application in the treatment of chronic kidney disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Pravastatin in Adriamycin-Induced Nephropathy in Rats

The aim of this study is to evaluate the effects of pravastatin on Adriamycin (ADR)-induced nephropathy and the mechanisms involved. Forty rats were divided into the following 4 groups: control, ADR (15 mg.kg-1, IP), ADR plus pravastatin (20 mg.kg-1 which was started 5 days prior to ADR injection), and ADR plus pravastatin (20 mg.kg-1 which was started 5 days after ADR injection). On day 20 aft...

متن کامل

Effects of Pravastatin in Adriamycin-Induced Nephropathy in Rats

The aim of this study is to evaluate the effects of pravastatin on Adriamycin (ADR)-induced nephropathy and the mechanisms involved. Forty rats were divided into the following 4 groups: control, ADR (15 mg.kg-1, IP), ADR plus pravastatin (20 mg.kg-1 which was started 5 days prior to ADR injection), and ADR plus pravastatin (20 mg.kg-1 which was started 5 days after ADR injection). On day 20 aft...

متن کامل

Valproic acid attenuates proteinuria and kidney injury.

Inhibitors of histone deacetylase (HDAC) have anti-inflammatory and antifibrotic effects in several organs and tissues, but their effect on the progression of renal disease is unknown. Here, we studied the effect of valproic acid in adriamycin-induced nephropathy in mice. Administration of valproic acid before kidney injury prevented the development of proteinuria and the onset of glomeruloscle...

متن کامل

The neuroprotective effect of lithium in cannabinoid dependence is mediated through modulation of cyclic AMP, ERK1/2 and GSK-3β phosphorylation in cerebellar granular neurons of rat

Lithium (Li), a glycogen synthase kinase-3β (GSK-3β) inhibitor, has used to attenuate thecannabinoid-induced dependence/withdrawal signs, but molecular mechanisms related to this areunclear. Recent studies indicate the involvement of upstream extracellular signal kinase1/2 (ERK1/2)and downstream GSK-3β pathways in the development of cannabinoid-induced dependence. Thisis mediated through cannab...

متن کامل

The neuroprotective effect of lithium in cannabinoid dependence is mediated through modulation of cyclic AMP, ERK1/2 and GSK-3β phosphorylation in cerebellar granular neurons of rat

Lithium (Li), a glycogen synthase kinase-3β (GSK-3β) inhibitor, has used to attenuate thecannabinoid-induced dependence/withdrawal signs, but molecular mechanisms related to this areunclear. Recent studies indicate the involvement of upstream extracellular signal kinase1/2 (ERK1/2)and downstream GSK-3β pathways in the development of cannabinoid-induced dependence. Thisis mediated through cannab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013